1^3+2^3+.+n^3=n^2(n+1)^2/4=[n(n+1)/2]^2(n+1)^4-n^4=[(n+1)^2+n^2][(n+1)^2-n^2]=(2n^2+2n+1)(2n+1)=4n^3+6n^2+4n+12^4-1^4=4*1^3+6*1^2+4*1+13^4-2^4=4*2^3+6*2^2+4*2+14^4-3^4=4*3^3+6*3^2+4*3+1.(n+1)^4-n^4=4*...
已知1+2=3,1+2+3=6,1+2+3+4=10,……1+2+3+4+……+n=n(n+1)/2,观察下列立方和1∧
1个回答
相关问题
-
求和1*4+2*5+3*6+...+n(n+3),已知1^2+2^2+3^2+...+n^2=(1/6)n(n+1)(2
-
已知1^2+2^2+3^2+4^2+…+n^2=1/6n(n+1)(2n+1)
-
已知1*1+2*2+3*3+……+n*n=1/6n(n+1)(2n+1),求1*2+3*4+5*6+7*8+.+49*5
-
已知:1/1*2=1-1/2,1/2*3=1/2-1/3,1/3*4=1/3-1/4,…,1/n*(n+1)=1/n-1
-
(1)1*2+2*3+3*4+.n+(n+1) (2)1*2+2*3+3*4.9*10
-
已知1²+2²+3²+4²···+n²=6分之1n(n+1)(2n+1
-
1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3
-
1/2-1/n+1<1/2^2+1/3^2+……+1/n^2<n-1/n(n=2,3,4,5,6.
-
N的N次方和1^2+2^2+3^2+4^2+……+n^2=?1^3+2^3+3^3+4^3+……+n^3=?1^4+2^
-
4/(1*2*3)+7/(2*3*4)+.+(3n+1)/[n(n+1)(n+2)]