解题思路:有直角三角形的射影定理可得出:AC2=CF•CE,AC2=CD•CB,可得CF•CE=CD•CB,可证明△DCF∽△ECB,即可得出∠B=∠CFD.
证明:∵在Rt△AEC中,AF⊥EC,
∴AC2=CF•CE.
∵在Rt△ABC中,AD⊥BC,
∴AC2=CD•CB.
∴CF•CE=CD•CB.
∴[CF/CB=
CD
CE].
∵∠DCF=∠ECB,
∴△DCF∽△ECB.
∴∠B=∠CFD.
点评:
本题考点: 相似三角形的判定与性质.
考点点评: 本题考查了直角三角形的性质以及相似三角形的判定和性质.