距离d=|0+0+2-a|/√[(a+1)²+1²]
令m=d²=(a-2)²/[(a+1)²+1²]=(a²-4a+4)/(a²+2a+2)
ma²+2ma+2m=a²-4a+4
(m-1)a²+(2m+4)a+(2m-4)=0
a是实数,所以判别式大于等于0
(4m²+16m+16)-4(m-1)(2m-4)>=0
-m²+10m>=0
m(m-10)
距离d=|0+0+2-a|/√[(a+1)²+1²]
令m=d²=(a-2)²/[(a+1)²+1²]=(a²-4a+4)/(a²+2a+2)
ma²+2ma+2m=a²-4a+4
(m-1)a²+(2m+4)a+(2m-4)=0
a是实数,所以判别式大于等于0
(4m²+16m+16)-4(m-1)(2m-4)>=0
-m²+10m>=0
m(m-10)