根号下(x+y-3)+(xy+x+y-2)的绝对值=0
根据根号和绝对值的性质
x+y-3=0
xy+x+y-2=0,xy+1=0
即x+y=3,xy=-1
y分之x^2+x分之y^2
=(x^3+y^3)/(xy)
=(x+y)(x^2+y^2-xy)/(xy)
=(x+y)[(x+y)^2-3xy]/(xy)
=3*(9+3)/(-1)
=-36
根号下(x+y-3)+(xy+x+y-2)的绝对值=0
根据根号和绝对值的性质
x+y-3=0
xy+x+y-2=0,xy+1=0
即x+y=3,xy=-1
y分之x^2+x分之y^2
=(x^3+y^3)/(xy)
=(x+y)(x^2+y^2-xy)/(xy)
=(x+y)[(x+y)^2-3xy]/(xy)
=3*(9+3)/(-1)
=-36