因为2*向量AB*向量AC=√3*|AB|*|AC|
向量AB*向量AC=|AB|*|AC|*cosA
故:cosA=√3/2
故:A=π/6
因为√3*|AB|*|AC|=3*BC²=3*|BC|²
由a/sinA=b/ainB=c/sinC=2R可知:
故:√3*sinC*sinB=3sin²A=3/4
故:sinC*sin(5π/6-C)=√3/4
故:1/2* [cos(2C-5π/6)+cos(5π/6)] =√3/4
故:cos(2C-5π/6)= √3/2
故:2C-5π/6=π/6或2C-5π/6=-π/6
故:C=π/2或C=π/3
对应的B=π/3或B=π/2