a n=3n-1
解:由a 1=S 1=
(a 1+1)(a 1+2),
解得a 1=1或a 1=2,由已知a 1=S 1>1,因此a 1=2.
又由a n+1=S n+1-S n=
(a n+1+1)(a n+1+2)-
(a n+1)(a n+2),
得(a n+1+a n)(a n+1-a n-3)=0,
因为a n>0,所以a n+1-a n-3=0.
即a n+1-a n=3,从而{a n}是公差为3,首项为2的等差数列,故{a n}的通项为a n=3n-1.
a n=3n-1
解:由a 1=S 1=
(a 1+1)(a 1+2),
解得a 1=1或a 1=2,由已知a 1=S 1>1,因此a 1=2.
又由a n+1=S n+1-S n=
(a n+1+1)(a n+1+2)-
(a n+1)(a n+2),
得(a n+1+a n)(a n+1-a n-3)=0,
因为a n>0,所以a n+1-a n-3=0.
即a n+1-a n=3,从而{a n}是公差为3,首项为2的等差数列,故{a n}的通项为a n=3n-1.