(2/9)/3=(2/9)-3,应改为:(9/2) /3=(9/2) -3;
(16/3)/4=(16/3)-4
(x/4)/5=(x/4)-5,(x/4)=5(x/4)-25,4(x/4)=25,x/4=25/4,x=25,∴ (25/4)/5=(25/4)-5,
(9/2) /3=(9/2) -3;
(16/3)/4=(16/3)-4
(25/4)/5=(25/4)-5,
(36/5)/6=(36/5)-6,
(49/6)/7=(49/6)-7,
(64/7)/8=(64/7)-8,
.
∴[n²/(n-1)]/n=n²/(n-1)-n
证明:左边=[n²/(n-1)]/n=n/(n-1)
右边=n²/(n-1)-n=(n²-n²+n)/(n-1)=n/(n-1)
左边=右边,等式成立.