f(x)=[sin(x+π/2)+1] [cos(π/2-x)+1]
=(cosx+1)(sinx+1)
=cosxsinx+cosx+sinx+1
令cosx+sinx=t,sinx+cosx=√2sin(x+π/4)∈[1,√2]
t²=1+2cosxsinx,cosxsinx=(t²-1)/2
即
f=(t²-1)/2+t+1
=1/2t²+t+1/2
=1/2(t+1)²
所以
最小值=1/2 (1+1)²=2.
f(x)=[sin(x+π/2)+1] [cos(π/2-x)+1]
=(cosx+1)(sinx+1)
=cosxsinx+cosx+sinx+1
令cosx+sinx=t,sinx+cosx=√2sin(x+π/4)∈[1,√2]
t²=1+2cosxsinx,cosxsinx=(t²-1)/2
即
f=(t²-1)/2+t+1
=1/2t²+t+1/2
=1/2(t+1)²
所以
最小值=1/2 (1+1)²=2.