求下列微分方程的通解或在给定初始条件下的特解1.(dy/dx)-y/x-1=0,y(e)=3e;令y/x=u,则y=ux;对x取导数得dy/dx=(du/dx)x+u,代入原式得:(du/dx)x+u-u-1=0,即有(du/dx)x=1;分离变量得du=dx/x;积分之得u=lnx+lnC=ln(Cx),故得通解为y=xln(Cx);代入初始条件:3e=eln(Ce)=e(lnC+1),即有lnC=2,C=e²;于是得特解为y=xln(e²x)=x(2+lnx)=2x+xlnx;2npxy'+2y=041y(1)=1;dy/dx=-2y/x;分离变量得dy/y=-2dx/x;取积分得lny=-2lnx+lnC=ln(C/x²)故得y=C/x²即通解为x²y=C;代入初始条件得C=1,故得特解为x²y=1.
求微分方程的通解或在给定初始条件下的特解,求明细