因为PF重合PD,所以PE为角OPD的中线,又因为角EPD等于180度减去角DPA,PB是角DPA的中线,所以角BPA等于角DPA的一半,又因为三角形BPA为直角三角形,所以角PBA等于90度减去角BPA,也就是等于角EPO,因为OE=Y,OP=X,AP=4-X,BA=3,所以Y/X=(4-X)/3,整合一下就可以得出关系式,因为X的平方不好表示所以就不整合了.
因为此图像开口向下,顶点是(0,4/3)所以,Y的最大值是4/3.
若D点在BC边上,则BD=BA,也就是说四边形PABD为边长是3的正方形,也就是PD垂直于OA,所以平P点坐标为(1,0),又因为OP=PF,所以四边形EOPF为边长为1的正方形,所以E点坐标为(0,1),而B点坐标是(4,3)
(听说^2这是平方符号)所以设方程式为Y=aX^2+bX+c,分别将三点代入,即可求出a,b,c,的值,再代回方程式即可.
不存在这样一个Q点,因为如果以PE为直角边,那也就是说角EQP为直角,这样的点只存在在以EP为直径,以EP中点为圆心的一个圆上,只有在这样的情况下才会出现直角,而这个圆已经与抛物线有过两个交点也就是E和P,一个圆最多与抛物线能有四个点,但是这个抛物线形状已定受B点牵制,它的对称轴的横坐标比P点大,也就是说,EP两点都在抛物线的左侧,而圆的直径有限制,P点又不是顶点,所以这样的圆与抛物线最多有两个点,不会再有第三个,所以不存在这样的Q点.
说的有些混乱,请见谅,不过思路大概是没有问题的!