已知数列{an}的前n项和是Sn(n∈N^*),a1=1且Sn*SN-1+1/2an=0.

1个回答

  • n≥2时,

    SnS(n-1)+(1/2)an=0

    2SnS(n-1)+Sn-S(n-1)=0

    等式两边同除以SnS(n-1)

    2+1/S(n-1)-1/Sn=0

    1/Sn -1/S(n-1)=2,为定值

    1/S1=1/a1=1/1=1,数列{1/Sn}是以1为首项,2为公差的等差数列

    1/Sn=1+2(n-1)=2n-1

    Sn=1/(2n-1)

    n=1时,S1=1/(2-1)=1,同样满足通项公式

    数列{Sn}的通项公式为Sn=1/(2n-1)

    n≥2时,an=Sn-S(n-1)=1/(2n-1)-1/[2(n-1)-1]=1/(2n-1)-1/(2n-3)

    n=1时,a1=1/(2-1)-1/(2-3)=1+1=2≠1

    数列{an}的通项公式为

    an=1 n=1

    1/(2n-1)-1/(2n-3) n≥2

    1/(1-Sn)=1/[1- 1/(2n-1)]=(2n-1)/(2n-2)

    n=1时,1/(1-S2)=3/2 √(1+1)=√2√(k+1),则当n=k+1时,

    [1/(1-S2)]·[1/(1-S3)]·...·[1/(1-S(k+2))]

    >√(k+1)·[2(k+2)-1]/[2(k+2)-2]

    =√(k+1)·(2k+3)/[2(k+1)]

    =(2k+3)/[2√(k+1)]

    (2k+3)²-4(k+1)(k+2)

    =4k²+12k+9-4(k²+3k+2)

    =4k²+12k+9-4k²-12k-8

    =1>0

    (2k+3)²/[4(k+1)]>k+2

    (2k+3)/[2√(k+1)]>√(k+2)

    [1/(1-S2)]·[1/(1-S3)]·...·[1/(1-S(k+2))]>(2k+3)/[2√(k+1)]>√(k+2)=√[(k+1)+1]

    不等式同样成立,k为任意正整数,因此对于任意正整数n,不等式恒成立.

    [1/(1-S2)]·[1/(1-S3)]·...·[1/(1-S(n+1))]>√(n+1)