作B关于AD的对称点E,则有
∠ABC=∠AEB=2∠C,AB=AE
∠AEB=∠C+∠CAE
所以∠C=∠CAE
AE=CE
AB=CE=BC-2DE
AD²=AC²-CD²=AE²-DE²=AB²-(CD-AB)²=AB²-CD²-AB²+2CD*AB
所以AC²=2CD*AB=2(AB+DE)*AB=2AB²+2DE*AB=2AB²+(BC-AB)*AB=
AB²+AB×BC
作B关于AD的对称点E,则有
∠ABC=∠AEB=2∠C,AB=AE
∠AEB=∠C+∠CAE
所以∠C=∠CAE
AE=CE
AB=CE=BC-2DE
AD²=AC²-CD²=AE²-DE²=AB²-(CD-AB)²=AB²-CD²-AB²+2CD*AB
所以AC²=2CD*AB=2(AB+DE)*AB=2AB²+2DE*AB=2AB²+(BC-AB)*AB=
AB²+AB×BC