Ab=A(a1+a2+a3)=Aa1+Aa2+Aa3=n1a1+n2a2+n3a3
A^2b=A(Ab)=A(n1a1+n2a2+n3a3)=n1^2a1+n2^2a2+n3^2a3
所以 (b,Ab,A^2b) = (a1,a2,a3) K
其中 K =
1 n1 n1^2
1 n2 n2^2
1 n3 n3^2
因为 n1,n2,n3 两两不同,所以|K|≠0,故K可逆.
又因为A的属于不同特征值的特征向量线性无关
所以 r(a1,a2,a3)=3
所以 r(b,Ab,A^2b) = r(a1,a2,a3) = 3
即 b,Ab,A^2b线性无关.