当a=3,b=-9时,
令F(x)=f(x)+g(x)=x³+3x²-9x +1
F'(x)=3x²+6x-9=3(x²+2x-3)=3(x-1)(x+3)
令F'(x)>0,解得 x1,
即F(x)的增区间为(-∞,-3)和(1,+∞),
同理,减区间为(-3,-1)
所以 F(x)的极大值为F(-3)=3³+3×3²-9×3+1=28
F(2)=8+12-18+1=3,
又F(x)在区间[k,2]上的最大值为28,
从而 k≤-3
当a=3,b=-9时,
令F(x)=f(x)+g(x)=x³+3x²-9x +1
F'(x)=3x²+6x-9=3(x²+2x-3)=3(x-1)(x+3)
令F'(x)>0,解得 x1,
即F(x)的增区间为(-∞,-3)和(1,+∞),
同理,减区间为(-3,-1)
所以 F(x)的极大值为F(-3)=3³+3×3²-9×3+1=28
F(2)=8+12-18+1=3,
又F(x)在区间[k,2]上的最大值为28,
从而 k≤-3