过点A、D分别做AE⊥BC,DF⊥BC,连接BE、 CF
∵∠ABC=135°∴ ∠ABE=45°
∵AB=根号6, ∴AE=BE = 根号3,
∵∠BCD=120°,∠CDF=60°
∵DC=6 ,∴ CF= 3, DF=3倍根号下3
∴ EF= 根号3+5根3+3= 3+6倍根3
过点A做,AG⊥DF,垂足为G,由题可知四边形AEFG为矩形
∴AG=EF= 3+6倍根3,GF=AE=根3
∴ DG=3倍根3-根3=2倍根3
所以利用勾股定理可求AD
选D
过点A、D分别做AE⊥BC,DF⊥BC,连接BE、 CF
∵∠ABC=135°∴ ∠ABE=45°
∵AB=根号6, ∴AE=BE = 根号3,
∵∠BCD=120°,∠CDF=60°
∵DC=6 ,∴ CF= 3, DF=3倍根号下3
∴ EF= 根号3+5根3+3= 3+6倍根3
过点A做,AG⊥DF,垂足为G,由题可知四边形AEFG为矩形
∴AG=EF= 3+6倍根3,GF=AE=根3
∴ DG=3倍根3-根3=2倍根3
所以利用勾股定理可求AD
选D