在三角形ABC中,已知2sin^2(A)=3sin^2(B)+3sin^2(C),cos(2A)+3cosA+3cos(

1个回答

  • 把公式cos(2A) = 1 -- 2sin²A

    代入已知等式cos(2A)+3cosA+3cos(B-C)=1得:

    1 -- 2sin²A + 3cosA + 3cos(B-C) = 1

    ∴ 2sin²A = 3cosA + 3cos(B-C)

    而已知2sin²A = 3sin²B + 3sin²C

    由以上两式的右边相等得:

    3sin²B + 3sin²C = 3cosA + 3cosBcosC + 3sinBsinC

    ∴3(sinB -- sinC)² = 3cosA+3cos(B+C) = 3cosA -- 3cosA = 0

    ∴(sinB -- sinC)² = 0

    ∴sinB = sinC

    ∴ B = C

    把B = C 代入已知等式cos(2A)+3cosA+3cos(B-C)=1得:

    cos(2A)+3cosA + 3 = 1 而cos(2A) = 2cos²A -- 1

    ∴ (2cos²A -- 1)+ 3cosA + 3 = 1

    ∴2cos²A + 3cosA + 1 = 0

    ∴ (cosA + 1)( 2cosA + 1)= 0

    ∴ cosA = -- 1 或 cosA = -- 1/2

    ∴ A = π (舍去)或 A = 2π/3 = 120°

    而 B = C

    ∴ B = C = π/6 = 30°

    ∴ A = 2π/3 = 120° B = C = π/6 = 30°

    祝您学习顺利!