已知平面内,O,A,B,C,四点,若向量OC=x向量OA+y向量OB,(x,y∈R)

2个回答

  • (1)y=1-x,所以OC=x*OA+(1-y)*OB,.(1) AB=OB-OA.(2) AC=OC-OA=x*OA+(1-x)*OB-OA=(x-1)*OA-(x-1)*OB=(x-1)*[OA-OB]=(1-x)*[OA-OB],即得:AC=(1-x)*AB,由共线定理得,向量AC与AB共线,所以点A,B,C共线.(2)由点A,B,C共线,则存在实数m,使得:AB=m*BC.(1)又已知OC=x*OA+y*OB.(2)又有:AB=OB-OA.(3) BC=OC-OB=x*OA+y*OB-OB=x*OA-(1-y)*OB.(4)由(1)(3)(4)得:OB-OA=mx*OA-m(1-y)*OB,移项得:(mx+1)*OA+(my-2)*OB=0,由向量恒等可得:mx+1=0,my-2=0;则my=2,mx=-1,两式相除得,y/x=-2,即y=-2x .