1、
a4=2a3+2^4 -1
a3=(a4 -2^4 +1)/2=(81-16+1)/2=33
a3=2a2+2^3 -1
a2=(a3-2^3 +1)/2=(33-8+1)/2=13
a2=2a1+2^2 -1
a1=(a2-2^2 +1)/2=(13-4+1)/2=5
a1=5 a2=13 a3=33
2、
an=2a(n-1) +2ⁿ -1
an -1=2a(n-1) -2 +2ⁿ
等式两边同除以2ⁿ
(an -1)/2ⁿ=[a(n-1) -1]/2^(n-1) +1
(an -1)/2ⁿ-[a(n-1) -1]/2^(n-1)=1,为定值.
(a1-1)/2=(5-1)/2=2
数列{(an -1)/2ⁿ}是以2为首项,1为公差的等差数列.
λ=-1
(an -1)/2ⁿ=2+(n-1)=n+1
an=(n+1)×2ⁿ +1
数列{an}的通项公式为an=(n+1)×2ⁿ +1