若x-y=1,x3-y3=2,则x4+y4=______,x5-y5______.

1个回答

  • 解题思路:根据x3-y3=(x-y)(x2+xy+y2)=2,求出xy=[1/3],x2+y2=[5/3],再由x4+y4=(x2+y22-2x2y2,即可求值;

    x5-y5=x5-x4y+x4y-xy4+xy4-y5=x4(x-y)+xy(x3-y3)+y4(x-y),将x-y=1,xy=[1/3],x3-y3=2代入可求出值.

    ∵x3-y3=(x-y)(x2+xy+y2)=2,

    x-y=1,

    x3-y3=(x-y)(x2+xy+y2)=2,

    又∵x2-2xy+y2=1,与上式联立得:

    xy=[1/3],x2+y2=[5/3],

    故x4+y4=(x2+y22-2x2y2=[23/9],

    又x5-y5=x5-x4y+x4y-xy4+xy4-y5=x4(x-y)+xy(x3-y3)+y4(x-y),

    将x-y=1,xy=[1/3],x3-y3=2代入,

    可得x5-y5=[29/9],

    故答案为[23/9]、[29/9].

    点评:

    本题考点: 立方公式.

    考点点评: 本题主要考查立方公式的知识点,解答本题的关键是熟练掌握等式之间的转化,此题难度不大.