A(-a,0),B(a,0)
设P(acosr,bsinr),
则M(0,bsinr/(1+cosr)),N(0,bsinr/(1-cosr))
向量AN=(a,bsinr/(1-cosr))
BM=(-a,bsinr/(1+cosr))
AN*BM=-a^2+(bsinr)^2/[(1-cosr)(1+cosr)]
=-a^2+(bsinr)^2/(1-cosr^2)
=b^2-a^2
为定值
A(-a,0),B(a,0)
设P(acosr,bsinr),
则M(0,bsinr/(1+cosr)),N(0,bsinr/(1-cosr))
向量AN=(a,bsinr/(1-cosr))
BM=(-a,bsinr/(1+cosr))
AN*BM=-a^2+(bsinr)^2/[(1-cosr)(1+cosr)]
=-a^2+(bsinr)^2/(1-cosr^2)
=b^2-a^2
为定值