1、设正六边形的边长是a(a不等于0),那么正三角形的边长就是2a.
很容易求得正三角形的面积=√ ̄3a^2 (根下三乘以a的平方)
正六边形实际上是两个等腰梯形组成的.
等腰梯形的上底是正六边形的边=a,下底是正六边形的中轴线=2a,
高=√ ̄3a/2.
面积可求为3√ ̄3a^2/2 (三倍的根下三乘以a的平方除以二)
那么正三角形与正六边形面积之比=2:3
2、设它们的面积是√ ̄3a^2.那么正三角形变长=2a.
根据上面一题中正六边形是由两个等腰梯形组成,高与上下底的关系,可求得正六边形边长=√ ̄6a/3 (根下六乘以a除以三)
那么正三角形与正六边形边长之比=√ ̄6:1
3、因为正六边形的每个角都是120°,又因为△AEF和△ABC是等腰三角形.
所以,∠FAE=∠BAC=30°.
因为△ACE是正三角形,所以∠HAG=60°.AH=HG=GA…………①.
∠AFE=∠AFB+∠BFE,得∠AFB=30°.
那么在△AFH中,∠HAF=∠HFA=30°,则AH=HF…………②.
同理,△ABG中,AG=BG…………③.
综合①,②,③,得BG=GH=HF.