f(x)=x²,g(x)=-(1/2)x+5,g⁻¹(x)表示g(x)的反函数,设F(x)=f[g⁻¹(x)]-g⁻¹[f(x)],F(x)最小值为多少?
由g(x)=-(1/2)x+5得x=10-2g(x),故g⁻¹(x)=10-2x;
于是得F(x)=(10-2x)²-(10-2x²)=100-40x+4x²-10+2x²=6x²-40x+90=6[x²-(20/3)x]+90
=6[(x-10/3)²-100/9]+90=6(x-10/3)²-200/3+90=6(x-10/3)²+70/3≧70/3
即F(x)的最小值为70/3,此时x=10/3.