过E作EM⊥AB,EN⊥CD,
∵CD⊥AB,∴EM ∥ CD,EN ∥ AB,
∵EF⊥BE,∴∠EFM+∠EBF=90°,
∵∠EBF+∠DGB=90°,∠DGB=∠EGN(对顶角相等)
∴∠EFM=∠EGN,
∴△EFM ∽ △EGN,
∴
EF
EG =
EM
EN ,
在△ADC中,
∵EM ∥ CD,
∴
EM
CD =
AE
AC ,
又CE=kEA,
∴AC=(k+1)AE
∴CD=(k+1)EM,
同理
EN
AD =
CE
AC ,
∴AD=
k+1
k EN,
∵∠ACB=90°,CD⊥AB,AC=mBC
tanA=
CD
AD =
BC
AC =
1
m ,
即
(k+1)EM
k+1
K EN =
1
m ,
∴
EM
EN =
1
km ,
∴EF=
1
km EG.