3a^2+4b^2=4
b^2=1-3a^2/4
b=√(1-3a^2/4)
b√(1+a^2)
=√(1-3a^2/4)√(1+a^2)
=√[-3/4(a^4-a^2/3-4/3)]
=√[49/48-3/4(a^2-1/6)^2]
∴当a^2=1/6和b^2=7/8时,
b√(1+a^2)的值最大,
最大值=7√3/12.
3a^2+4b^2=4
b^2=1-3a^2/4
b=√(1-3a^2/4)
b√(1+a^2)
=√(1-3a^2/4)√(1+a^2)
=√[-3/4(a^4-a^2/3-4/3)]
=√[49/48-3/4(a^2-1/6)^2]
∴当a^2=1/6和b^2=7/8时,
b√(1+a^2)的值最大,
最大值=7√3/12.