g(x) = ∫ e^(-u^2)du (积分区间是0到x)
lim[ g(x),x->+∞] = √π /2,y=g(x)的其水平渐进线 y =√π /2
S = ∫(0,+∞) 【√π /2 - g(x)】dx
= ∫(0,+∞) √π /2 dx - [ x * g(x) |(x=+∞) - x * g(x) |(x=0) ] + ∫(0,+∞) x * e^(-x²) dx
= ∫(0,+∞) x * e^(-x²) dx
= (-1/2) [ e^(-x²)|(x=+∞) - e^(-x²)|(x=+∞) ]
= 1/2