f(x)=a/3x^3-3/2x^2+(a+1)x+1
f'(x)=ax^2-3x+(a+1),
x=1时,f'(1)=0,
a-3+a+1=0,
a=1.
f'(x)=x^2-3x+2.
x^2-3x+2>x^2-x-a+1,
a>2x-1.
0>2x-1,
x<1/2.
实数x的取值范围是:X<1/2.
f(x)=a/3x^3-3/2x^2+(a+1)x+1
f'(x)=ax^2-3x+(a+1),
x=1时,f'(1)=0,
a-3+a+1=0,
a=1.
f'(x)=x^2-3x+2.
x^2-3x+2>x^2-x-a+1,
a>2x-1.
0>2x-1,
x<1/2.
实数x的取值范围是:X<1/2.