∵a≥1∴f(x)在(0,1]上单调递增
1.当x1=x2时,不等式成立,a≥1
2.不妨设x1>x2,则x1-x2≤f(x1)-f(x2)
所以f(x2)-x2≤f(x1)-x1
令g(x)=f(x)-x
=1/2ax^2-3x+2+lnx
∵g(x)在(0,1]上是不增函数
∴g’(x)=ax-3+1/x≥0
∴a≥3/x-1/x^2(参变量分离)
令1/x=t,则a≥3t-t^2
=-(t-3/2)^2+9/4
即a≥9/4 (恒成立问题)
综上1.2.a≥9/4
∵a≥1∴f(x)在(0,1]上单调递增
1.当x1=x2时,不等式成立,a≥1
2.不妨设x1>x2,则x1-x2≤f(x1)-f(x2)
所以f(x2)-x2≤f(x1)-x1
令g(x)=f(x)-x
=1/2ax^2-3x+2+lnx
∵g(x)在(0,1]上是不增函数
∴g’(x)=ax-3+1/x≥0
∴a≥3/x-1/x^2(参变量分离)
令1/x=t,则a≥3t-t^2
=-(t-3/2)^2+9/4
即a≥9/4 (恒成立问题)
综上1.2.a≥9/4