(1),a=1时,f(x)=(1/3)x^3 - x^2 +bx +1 ,f'(x)=x^2-2x+b ,代入(0,0),得b=0,
F'(x)=x^2-2x,f(x)=1/3)x^3 - x^2 +1,代入x=3,得f(3)=1,于是得(3,1),f'(3)=k=3
所以切线y-1=3(x-3)
(2),f'(x)=x^2 - (a+1)x +b ,代入(0,0),得b=0,得f'(x)=x^2 - (a+1)x ,此抛物线开口向上,所以由题意,得对称轴(a+1)/2
(1),a=1时,f(x)=(1/3)x^3 - x^2 +bx +1 ,f'(x)=x^2-2x+b ,代入(0,0),得b=0,
F'(x)=x^2-2x,f(x)=1/3)x^3 - x^2 +1,代入x=3,得f(3)=1,于是得(3,1),f'(3)=k=3
所以切线y-1=3(x-3)
(2),f'(x)=x^2 - (a+1)x +b ,代入(0,0),得b=0,得f'(x)=x^2 - (a+1)x ,此抛物线开口向上,所以由题意,得对称轴(a+1)/2