当x=-1时,f(x)取极大值,当x=1时,f(x)取极小值
连续,则过原点,a4=0
导数f'=4a0x^3+3a1x^2+a3,极值处=0,得a0=0,3a1+a3=0
又2/3= -a1-a3,得a1=-1/3,a3=1
所以f(x)= -1/3*x^3+x
f'= -x^2+1,设两切点-√2≤x1<x2≤√2,(-x1^2+1)*(-x2^2+1)= -1
若x1= -2^0.5,则x2=0
当x=-1时,f(x)取极大值,当x=1时,f(x)取极小值
连续,则过原点,a4=0
导数f'=4a0x^3+3a1x^2+a3,极值处=0,得a0=0,3a1+a3=0
又2/3= -a1-a3,得a1=-1/3,a3=1
所以f(x)= -1/3*x^3+x
f'= -x^2+1,设两切点-√2≤x1<x2≤√2,(-x1^2+1)*(-x2^2+1)= -1
若x1= -2^0.5,则x2=0