由递推式知,所有an,bn,cn均为正实数
设fn(x)=anx²+bnx+cn,△n=bn²-4ancn
由于
fn(x)=anx²+bnx+cn
=[a(n-1)+b(n-1)+c(n-1)]x²+[4a(n-1)+3b(n-1)+2c(n-1)]x+[4a(n-1)+2b(n-1)+c(n-1)]
∴△n=[4a(n-1)+3b(n-1)+2c(n-1)]²-4[a(n-1)+b(n-1)+c(n-1)] [4a(n-1)+2b(n-1)+c(n-1)]
=b(n-1)²-4a(n-1)c(n-1)=△(n-1)
令n=1,2,3,……,2005,有△2005=△2004=……=△1=△0,
结合已知条件,得b0²-4a0c0=△0=△2005=0,
又a0,b0,c0成等差数列,∴2b0=(a0+c0)
代入得(a0/c0)-14(a0/c0)+1=0
解得(a0/c0)=7±4√3