∵∠ABC的平分线BF与△ACB的外角∠ACE的平分线CD相交于点D,
∴∠DCE=1/2 ∠ACE,∠DBC=1/2 ∠ACE,
∵∠DCE是△BCD的外角,
∴∠D=∠DCE-∠DBC
=1/2 ∠ACE- 1/2∠ABC
=1/2 (∠A+∠ABC)-1/2 ∠ABC
=1/2 ∠A+ 1/2∠ABC- 1/2∠ABC
= 1/2∠A= ×40°
=20°.
(2)
∠A=2∠D
∵∠ABC的平分线BF与△ACB的外角∠ACE的平分线CD相交于点D,
∴∠DCE=1/2 ∠ACE,∠DBC=1/2 ∠ACE,
∵∠DCE是△BCD的外角,
∴∠D=∠DCE-∠DBC
=1/2 ∠ACE- 1/2∠ABC
=1/2 (∠A+∠ABC)-1/2 ∠ABC
=1/2 ∠A+ 1/2∠ABC- 1/2∠ABC
= 1/2∠A= ×40°
=20°.
(2)
∠A=2∠D