解题思路:(1)易得此几何体为圆锥,圆锥的全面积=底面积+侧面积=π×底面半径2+π×底面半径×母线长,把相关数值代入即可求解.
(2)将圆锥的侧面展开,设顶点为B',连接BB',AC.线段AC与BB'的交点为D,线段BD是最短路程
(1)名称:圆锥,
利用三视图可获取此几何体是圆锥,其底面直径是4,母线长为6,
展开后为侧面为扇形,扇形半径为6,弧长为4π,
∴侧面积为12π,
底面是圆,
∴面积为4π,
∴全面积为16π,
(2)如图将圆锥侧面展开,得到扇形ABB′,则线段BD为所求的最短路程.
设∠BAB′=n°.
∵[nπ•6/180=4π,
∴n=120即∠BAB′=120°.
∵C为弧BB′中点,
∴∠ADB=90°,∠BAD=60°,
∴BD=AB•sin∠BAD=6×
3
2]=3
3
∴最短距离:3
3.
点评:
本题考点: 平面展开-最短路径问题;圆锥的计算;由三视图判断几何体.
考点点评: 本题考查了平面展开-最短路径问题,解题时注意把立体图形转化为平面图形的思维,圆锥表面积的计算公式.