首先在做前二题时已经可得bn=(a+1)*2^n
所以an=(a+1)*2^n-n^2
当n≥3时
a(n+1)-an
=(a+1)*2^n-(n+1)^2+n^2
=(a+1)*2^n-2n-1>2^n-2n-1>0
所以当n≥3时an是单调递增的.
只须比较a1 a2 a3,
a1=2a+1
a2=4a
a3=8a-1
讨论a范围,就可得到三者中最小值,即为数列的最小项
首先在做前二题时已经可得bn=(a+1)*2^n
所以an=(a+1)*2^n-n^2
当n≥3时
a(n+1)-an
=(a+1)*2^n-(n+1)^2+n^2
=(a+1)*2^n-2n-1>2^n-2n-1>0
所以当n≥3时an是单调递增的.
只须比较a1 a2 a3,
a1=2a+1
a2=4a
a3=8a-1
讨论a范围,就可得到三者中最小值,即为数列的最小项