(1)∵a1=2,对一切n∈N*都有Sn+1=3Sn+n2+2成立,
令n=1,可得 2+a2=3×2+1+2,求得a2=7.
(2)证明:∵Sn+1=3Sn+n2+2,∴Sn=3Sn-1+(n-1)2+2,
∴两式相见可得an+1=3an+2n-1,即an+1+(n+1)=3an+2n-1+(n+1)=3(an+n) ①.
又bn=an+n,∴由①可得 bn+1=3(an+1+n)=3bn,∴数列{bn}是公比为3的等比数列.
(3)由于b1=a1+1=3,故bn=3×3n-1=3n,
∴
1
b1+
1
b3+…+
1
b2n?1=
1/3]+[1
33+
1
35+…+
1
32n?1=
1/3[1?(
1
9)n]
1?
1
9]=[3/8]-[3/8]×(
1
9)n,
∴
lim
n→∞([1
b1+
1
b3+…+
1
b2n?1)=
lim
n→∞ (
3/8]-[3/8]×(
1
9)n )=[3/8].