已知数列{an},Sn是前n项的和,且满足a1=2,对一切n∈N*都有Sn+1=3Sn+n2+2成立,设bn=an+n.

1个回答

  • (1)∵a1=2,对一切n∈N*都有Sn+1=3Sn+n2+2成立,

    令n=1,可得 2+a2=3×2+1+2,求得a2=7.

    (2)证明:∵Sn+1=3Sn+n2+2,∴Sn=3Sn-1+(n-1)2+2,

    ∴两式相见可得an+1=3an+2n-1,即an+1+(n+1)=3an+2n-1+(n+1)=3(an+n) ①.

    又bn=an+n,∴由①可得 bn+1=3(an+1+n)=3bn,∴数列{bn}是公比为3的等比数列.

    (3)由于b1=a1+1=3,故bn=3×3n-1=3n

    1

    b1+

    1

    b3+…+

    1

    b2n?1=

    1/3]+[1

    33+

    1

    35+…+

    1

    32n?1=

    1/3[1?(

    1

    9)n]

    1?

    1

    9]=[3/8]-[3/8]×(

    1

    9)n,

    lim

    n→∞([1

    b1+

    1

    b3+…+

    1

    b2n?1)=

    lim

    n→∞ (

    3/8]-[3/8]×(

    1

    9)n )=[3/8].