an是斐波那契数列
a[n+1]=an+a[n-1]
a[n+1]/a[n]=1+a[n-1]/a[n]
若的极限x[n]存在,收敛
则lim[n->∞](a[n+1]/a[n])=lim[n->∞](a[n]/a[n-1])=xn
所以xn=1+1/xn
即xn^2-xn-1=0
xn=(1+√5)/2 (负数略)
an是斐波那契数列
a[n+1]=an+a[n-1]
a[n+1]/a[n]=1+a[n-1]/a[n]
若的极限x[n]存在,收敛
则lim[n->∞](a[n+1]/a[n])=lim[n->∞](a[n]/a[n-1])=xn
所以xn=1+1/xn
即xn^2-xn-1=0
xn=(1+√5)/2 (负数略)