连接AB,OA DB切圆O于点B,BC为直径 ∴DB⊥FC于B ∴∠FBE=∠DBC=90° 而∠BAC为直径BC所对的圆周角 ∴∠BAC=90° ∴∠DAB=180°-90°=90° ∴△DAB是直角三角形 而在Rt△DAB中,E是斜边BD的中点 ∴AE=BE=BD/2 △ABE是等腰三角形 两底角∠EAB=∠DBA 而∠DBA为圆O切线DB与弦AB所成的弦切角,∠C是弦AB所对的圆周角 故∠DBA=∠C ∴∠EAB=∠C OA,OC均为圆O半径,有OA=OC 于是,在等腰△AOC中,∠OAC=∠C ∴∠EAB=∠OAC ∴∠FAO=∠EAB+∠BAO=∠OAC+∠BAO=∠BAC=90° 在Rt△AFO中,∠FAO=90° ∴sin∠F=OA/OF=3/5 设OA=3,则OF=5 ∴OB=OA=3 BC=2OB=6 BF=OF-OB=2 而在Rt△FBE中,∠FBE=90° ∴sin∠F=BE/EF=3/5 ① 再由勾股定理有:EF^=BE^+BF^ ② 而BF=2 由①,②联立可求出:BE=3/2 ∴BD=2BE=3 在Rt△DBC中:∠DBC=90° 由勾股定理可得:CD^=BD^+BC^ 代入BD=3,BC=6,可求出:CD=3√5 于是,有sin∠D=BC/CD=6/(3√5)=2√5/5
A是以BC为直径的圆O上一点,过点B作圆O的切线,与CA的延长线相交于点D,E是BD的中点,延长AE
1个回答
相关问题
-
如图,A是以BC为直径的⊙O上一点,过B作⊙O的切线,与CA延长线交于点D,E是BD中点,延长AE与CB的延长线交于F,
-
圆的难题A是以BC为直径的圆O上一点,AD垂直于BC于点D,过点B作圆O的切线,与CA的延长线相交于点E,G是AD的中点
-
圆和直线的关系,是以BC为直径的圆O上的一点,AD垂直BC与点D,过B作圆O的切线,与CA的延长线相交于点E,G是AD的
-
如图,A是以BC为直径的⊙O上一点,AD垂直于BC于点D,过点B做⊙O的切线,与CA的延长线相交于点E,G是AD的中点,
-
点D是圆的直径CA延长线上一点,点B在圆O上,BD是圆O的切线,切点为B且AB=AD
-
如图,BD为圆O的直径.A为弧BC的中点,AD交BC于点E,过D作圆O的切线,交BC的延长线于F(
-
如图,BD是圆O的直径,AB与圆O相切于点B,过点D作OA的平行线交圆O于点C,AC与BD的延长线相交于点E
-
C是以AB为直径的圆O上一点,过O作OE⊥AC于点E,过点A作圆O的切线交OE的延长线于点F,连接CF并延长交BA的
-
如图,C是以AB为直径的圆O上一点,过O作OE⊥AC于点E,过点A作圆O切线,交 OE的延长线于点F,
-
如图,AB是圆O的直径,D是BC的中点,AC、BD的延长线相交于点E.求证:AE=AB