易知,a,b是方程x²+2(k+3)x+2k+4=0的两个根
由韦达定理得
a+b=-2(k+3)
ab=2k+4
所以
a²+b²
=(a+b)²-2ab
=4(k+3)²-2(2k+4)
=4(k²+6k+9)-4k-8
=4k²+20k+28
=(2k+5)²+3
所以当k=-5/2=-2.5时,a²+b²取最小值3
易知,a,b是方程x²+2(k+3)x+2k+4=0的两个根
由韦达定理得
a+b=-2(k+3)
ab=2k+4
所以
a²+b²
=(a+b)²-2ab
=4(k+3)²-2(2k+4)
=4(k²+6k+9)-4k-8
=4k²+20k+28
=(2k+5)²+3
所以当k=-5/2=-2.5时,a²+b²取最小值3