a^(3a)*b^(3b)*c^(3c)/[(abc)^(a+b+c)]
=a^(2a-b-c)*b^(2b-c-a)*c^(2c-a-b)
=(a/b)^(a-b)*(b/c)^(b-c)*(c/a)^(c-a),
当a>=b>0时a/b>=1,a-b>=0,(a/b)^(a-b)>=1;
当0=1,(abc)^(a+b+c)>0,
∴a^(3a)*b^(3b)*c^(3c)>=(abc)^(a+b+c),
两边开立方,就得待证式.
a^(3a)*b^(3b)*c^(3c)/[(abc)^(a+b+c)]
=a^(2a-b-c)*b^(2b-c-a)*c^(2c-a-b)
=(a/b)^(a-b)*(b/c)^(b-c)*(c/a)^(c-a),
当a>=b>0时a/b>=1,a-b>=0,(a/b)^(a-b)>=1;
当0=1,(abc)^(a+b+c)>0,
∴a^(3a)*b^(3b)*c^(3c)>=(abc)^(a+b+c),
两边开立方,就得待证式.