由已知得3(a1+7d)=5(a1+12d)得a1=-(39/2)d
由a1>0得d<0
Sn=a1n+1/2n(n-1)d=-(39/2)nd+1/2n(n-1)d=(n^2-40n)(d/2)
因d<0,当n^2-40n在n=20时取最小值,Sn可取最大值
所以n=20时,Sn取量大值
由已知得3(a1+7d)=5(a1+12d)得a1=-(39/2)d
由a1>0得d<0
Sn=a1n+1/2n(n-1)d=-(39/2)nd+1/2n(n-1)d=(n^2-40n)(d/2)
因d<0,当n^2-40n在n=20时取最小值,Sn可取最大值
所以n=20时,Sn取量大值