解题思路:求出AB的坐标,设直线AB的解析式是y=kx+b,把A、B的坐标代入求出直线AB的解析式,根据三角形的三边关系定理得出在△ABP中,|AP-BP|<AB,延长AB交x轴于P′,当P在P′点时,PA-PB=AB,此时线段AP与线段BP之差达到最大,求出直线AB于x轴的交点坐标即可.
∵把A([1/2],y1),B(2,y2)代入反比例函数y=[1/x]得:y1=2,y2=[1/2],
∴A([1/2],2),B(2,[1/2]),
∵在△ABP中,由三角形的三边关系定理得:|AP-BP|<AB,
∴延长AB交x轴于P′,当P在P′点时,PA-PB=AB,
即此时线段AP与线段BP之差达到最大,
设直线AB的解析式是y=kx+b,
把A、B的坐标代入得:
2=
1
2k+b
1
2=2k+b,
解得:k=-1,b=[5/2],
∴直线AB的解析式是y=-x+[5/2],
当y=0时,x=[5/2],
即P([5/2],0),
故选:D.
点评:
本题考点: 反比例函数综合题;待定系数法求一次函数解析式;三角形三边关系.
考点点评: 本题考查了三角形的三边关系定理和用待定系数法求一次函数的解析式的应用,解此题的关键是确定P点的位置,题目比较好,但有一定的难度.