求不定积分∫[1/(sin^2 cos^2(x)]dx

1个回答

  • 原式= ∫{ [(sin x)^2 +(cos x)^2 ] /[(sin x)^2 (cos x)^2 ] }dx

    = ∫[ (sec)^2 ]dx +∫[ (csc)^2 ]dx

    = tan x -cot x +C

    = sin x /cos x -cos x /sin x +C

    = [ (sin x)^2 -(cos x)^2 ] / (cos x sin x) +C

    = -cos 2x / [ (1/2)sin 2x ] +C

    = -2 cot 2x +C,(C为任意常数).

    解法二:原式= ∫dx / [(1/4) (sin 2x)^2]

    = 4 ∫[ (csc 2x)^2 ] dx

    = 2 ∫[ (csc 2x)^2 ] d(2x)

    = -2 cot 2x +C,(C为任意常数).

    = = = = = = = = =

    以上计算可能有误,你最好检查一下.

    正负是个大问题.

    注意:

    sec x =1/ cos x,

    csc x =1/ sin x.

    (tan x)' =(sec x)^2,

    (cot x)' = -(csc x)^2.