(1)由对任意实数α、β,恒有f(cosα)≤0,f(2-sinβ)≥0,
可得恒有f(cos0)≤0,且f(2-sin[π/2])≥0,即f(1)=[1/4]+b-[3/4]=0,可得b=[1/2];
(2)由Sn=f(an)=[1/4]an2+[1/2]an-[3/4](n∈N+),可得Sn+1=[1/4]an+12+[1/2]an+1-[3/4]
故an+1=Sn+1-Sn=[1/4](an+12-an2)+[1/2](an+1-an),即(an+1+an)(an+1-an-2)=0,
又{an}是正数数列,故an+1+an>0,∴an+1-an=2,即数列{an}是等差数列.
又a1=[1/4]a12+[1/2]a1-[3/4],且a1>0,可得a1=3,故an=3+2(n-1)=2n+1;
(3)假设存在等比数列{bn},使得a1b1+a2b2++anbn=2n+1(2n-1)+2对于一切正整数n都成立,
令n=1,2,可得b1=2,b2=4,故{bn}的公比为2,从而bn=2×2n-1=2n.
令Sn=3×2+5×22+…+(2n+1)2n⇒Sn=2n+1(2n-1)+2
故a1b1+a2b2++anbn=2n+1(2n-1)+2对于一切正整数n都成立.
(4)
cn=
1
1+an⇒cn=(
1
1+an)2=
1
(1+an)2Tn
=
n
i=1