解题思路:①两个不同的三角形中有两个角相等,那么第三个角也相等;
②根据ASA可得出△A1BF≌△CBE,再由A1B-BE=BC-BF即可得出结论;
③∠CDF=α,而∠C与顺时针旋转的度数不一定相等,所以DF与FC不一定相等;
④用角角边证明△A1BF≌△CBE后可得A1F=CE.
①∠C=∠C1(旋转后所得三角形与原三角形完全相等)
又∵∠DFC=∠BFC1(对顶角相等)
∴∠CDF=∠C1BF=α,故结论①正确;
②∵AB=BC,
∴∠A=∠C,
∴∠A1=∠C,A1B=CB,∠A1BF=∠CBE,
∴△A1BF≌△CBE(ASA),
∴BF=BE,
∴A1B-BE=BC-BF,
∴A1E=CF,故②正确;
③在三角形DFC中,∠C与∠CDF=α度不一定相等,所以DF与FC不一定相等,
故结论③不一定正确;
④∠A1=∠C,BC=A1B,∠A1BF=∠CBE
∴△A1BF≌△CBE(ASA)
那么A1F=CE.
故结论④正确.
故答案为:①②④.
点评:
本题考点: 旋转的性质;全等三角形的判定与性质;等腰三角形的性质.
考点点评: 本题考查旋转的性质,其中涉及三角形全等的定理和性质:角角边证明三角形全等,全等三角形对应边相等.