证明:
⑴
∵△ABC和△ADE是等边三角形
∴AB=AC,AE=AD,∠DAE=∠BAC=60°
∴∠DAE-∠BAD=∠BAC-∠BAD
即∠BAE=∠CAD
∴△AEB≌△ADC(SAS)
四边形BCEF是平行四边形,理由如下:
由上得:△AEB≌△ADC
∴∠ABE=∠C=60°
又∠BAC=∠C=60°
∴∠ABE=∠BAC
∴BE∥CF
又EF∥BC
∴四边形BCEF是平行四边形
⑵
⑴中的结论仍成立,理由如下:
∵△ABC和△ADE是等边三角形
∴AB=AC,AE=AD,∠BAC=∠DAE=60°
∴∠BAC-∠EAF=∠DAE-∠EAF
即∠BAE=∠DAC
∴△AEB≌△ADC(SAS)
四边形BCEF是平行四边形
由△AEB≌△ADC得:
∠ABE=∠ACD
而∠ACD=180°-∠ACB=120°
∴∠ABE=∠ABC+∠CBE=60°+∠CBE=120°
∴∠CBE=60°
∵∠DCF=∠ACB=60°(对顶角相等)
∴∠DCF=∠CBE
∴CF∥BE
又BC∥EF
∴四边形BCEF是平行四边形
⑶
当CD=CB时,四边形BCEF是菱形,理由如下:
由△AEB≌△ADC得:
BE=CD
又CD=CB
∴BE=CB
由上知:四边形BCEF是平行四边形
∴四边形BCEF是菱形