(a+b)^2+(b+c)^2+(a-c)^2
=(-2008+2007)^2+(2007-2006)^2+(-2008+2006)^2
=1^2+1^2+2^2=6
而(a+b)^2+(b+c)^2+(a-c)^2
=(a^2+b^2+2ab)+(b^2+c^2+2bc)+(a^2+c^2-2ac)
=2(a^2+b^2+c^2+ab+bc-ac)
所以a^2+b^2+c^2+ab+bc-ac
=((a+b)^2+(b+c)^2+(a-c)^2)/2
=6/2
=3
(a+b)^2+(b+c)^2+(a-c)^2
=(-2008+2007)^2+(2007-2006)^2+(-2008+2006)^2
=1^2+1^2+2^2=6
而(a+b)^2+(b+c)^2+(a-c)^2
=(a^2+b^2+2ab)+(b^2+c^2+2bc)+(a^2+c^2-2ac)
=2(a^2+b^2+c^2+ab+bc-ac)
所以a^2+b^2+c^2+ab+bc-ac
=((a+b)^2+(b+c)^2+(a-c)^2)/2
=6/2
=3