(tanπ/4+tanx)/(1-tanπ/4tanx)=1/2
(1+tanx)/(1-tanx)=1/2
1-tanx=2+2tanx
tanx=-1/3
原式=(2sinxcosx-cos²x)/(1+2cos²x-1)
=(2sinxcosx-cos²x)/2cos²x
=sinx/cosx-1/2
=tanx-1/2
=-5/6
(tanπ/4+tanx)/(1-tanπ/4tanx)=1/2
(1+tanx)/(1-tanx)=1/2
1-tanx=2+2tanx
tanx=-1/3
原式=(2sinxcosx-cos²x)/(1+2cos²x-1)
=(2sinxcosx-cos²x)/2cos²x
=sinx/cosx-1/2
=tanx-1/2
=-5/6