AN2-BN2=AM2-MN2-BN2=AM2-BM2=AM2-(BC-MC)2=(因为AM是中线)AM2-MC2=AC2
证明:
在Rt△ACM中,AC²=AM²-MC²,MC=MB,
∴AC²=AM²-MB²
在Rt△ANM中,AM²=AN²+MN²,
∴AC²=AN²+MN²-MB²
在Rt△MNB中,MN²=MB²-BN²,
∴AC²=AN²+MB²-BN²-MB²
∴AC²=AN²+-BN²
即 AN²-BN²=AC²
AN2-BN2=AM2-MN2-BN2=AM2-BM2=AM2-(BC-MC)2=(因为AM是中线)AM2-MC2=AC2
证明:
在Rt△ACM中,AC²=AM²-MC²,MC=MB,
∴AC²=AM²-MB²
在Rt△ANM中,AM²=AN²+MN²,
∴AC²=AN²+MN²-MB²
在Rt△MNB中,MN²=MB²-BN²,
∴AC²=AN²+MB²-BN²-MB²
∴AC²=AN²+-BN²
即 AN²-BN²=AC²