因为p‖q
则(a+b+c,a)‖(3c,a-b+c),得3ac=(a+b+c)(a-b+c)=a^2+c^2+2ac-b^2
即a^2+c^2-b^2=ac
则cosB=(a^2+c^2-b^2)/2ac=1/2,即B=60°
因为p⊥r
则(a+b+c,a)(-cosA,cosA+cosB+cosC)=0
(a+b+c)cosA-a(cosA+cosB+cosC)=0
sinAcosA+sinBcosA+sinCcosA-sinAcosA-siAcosB-sinAcosC=0
(sinBcosA-sinAcosB)+(sinCcosA-sinAcosC)=0
sin(B-A)+sin(C-A)=0
sin(60°-A)=sin(A-C)=sin(2A-120°) (因为B=60°)
60°-A=2A-120°+k*360°或60°-A=180°-(2A-120°)+k*360°
即A=60°或A=120°(舍)
综上A=B=C=60°