解题思路:本题可设每轮感染中平均一台会感染x台电脑,则第一轮后共有(1+x)台被感染,第二轮后共有(1+x)+x(1+x)即(1+x)2台被感染,利用方程即可求出x的值,并且3轮后共有(1+x)3台被感染,比较该数同700的大小,即可作出判断.
设每轮感染中平均每一台电脑会感染x台电脑,依题意得:1+x+(1+x)x=81,
整理得(1+x)2=81,
则x+1=9或x+1=-9,
解得x1=8,x2=-10(舍去),
∴(1+x)2+x(1+x)2=(1+x)3=(1+8)3=729>700.
答:每轮感染中平均每一台电脑会感染8台电脑,3轮感染后,被感染的电脑会超过700台.
点评:
本题考点: 一元二次方程的应用.
考点点评: 本题只需仔细分析题意,利用方程即可解决问题.找到关键描述语,找到等量关系准确的列出方程是解决问题的关键.