因为x,y均大于零,故:
(1/x)+(1/y)
=[1/x^(1/2)-1/y^(1/2)]^2+2/(xy)^(1/2)
当1/x^(1/2)-1/y^(1/2)=0,x=y时,
(1/x)+(1/y)的最小值为2/(xy)^(1/2).
将x=y带入2x+y=1得:x=y=1/3,
故(1/x)+(1/y)的最小值:
2/(xy)^(1/2)=2/(1/3*1/3)^(1/2)=6
因为x,y均大于零,故:
(1/x)+(1/y)
=[1/x^(1/2)-1/y^(1/2)]^2+2/(xy)^(1/2)
当1/x^(1/2)-1/y^(1/2)=0,x=y时,
(1/x)+(1/y)的最小值为2/(xy)^(1/2).
将x=y带入2x+y=1得:x=y=1/3,
故(1/x)+(1/y)的最小值:
2/(xy)^(1/2)=2/(1/3*1/3)^(1/2)=6